Some results in the extension with a coherent Suslin tree

Teruyuki Yorioka (Shizuoka University)

Winter School in Abstract Analysis section Set Theory & Topology 28th January – 4th February, 2012 **Motivation**

Theorem (Kunen, Rowbottom, Solovay, etc). MA_{\aleph_1} *implies* \mathcal{K}_2 : Every ccc forcing has property K. **Question** (Todorčević). *Does* \mathcal{K}_2 *imply* MA_{\aleph_1} ?

Theorem (Todorčević). $PID + \mathfrak{p} > \aleph_1$ *implies no S*-spaces. **Question** (Todorčević). *Under* PID, *does no S*-spaces *imply* $\mathfrak{p} > \aleph_1$?

Definition (Todorčević). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin.

Theorem (Farah). $\mathfrak{t} = \aleph_1$ holds in the extension with a Suslin tree.

Proof. Suppose that T is a Suslin tree, and take $\pi : T \to [\omega]^{\aleph_0}$ such that

$$s \leq_T t \to \pi(s) \supseteq^* \pi(t)$$
 and $s \perp_T t \to \pi(s) \cap \pi(t)$ finite.

Then for a generic branch G through T, the set $\{\pi(s) : s \in G\}$ is a \subseteq^* -decreasing sequence which doesn't have its lower bound in $[\omega]^{\aleph_0}$.

Motivation

Theorem (Kunen, Rowbottom, Solovay, etc). MA_{\aleph_1} *implies* \mathcal{K}_2 : Every ccc forcing has property K. **Question** (Todorčević). *Does* \mathcal{K}_2 *imply* MA_{\aleph_1} ?

Theorem (Todorčević). $PID + \mathfrak{p} > \aleph_1$ *implies no S*-spaces. **Question** (Todorčević). *Under* PID, *does no S*-spaces *imply* $\mathfrak{p} > \aleph_1$?

Definition (Todorčević). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin.

Question (Todorčević). Under PFA(S), does S force \mathcal{K}_2 ?

Question (Todorčević). Under PFA(S), does S force no S-spaces?

Question. What statements can be forced by S under PFA(S)?

Motivation

Theorem (Kunen, Rowbottom, Solovay, etc). MA_{\aleph_1} *implies* \mathcal{K}_2 : Every ccc forcing has property K. **Question** (Todorčević). *Does* \mathcal{K}_2 *imply* MA_{\aleph_1} ?

Theorem (Todorčević). $PID + \mathfrak{p} > \aleph_1$ *implies no S*-spaces. **Question** (Todorčević). *Under* PID, *does no S*-spaces *imply* $\mathfrak{p} > \aleph_1$?

Definition (Todorčević). PFA(S) is an axiom that there exists a coherent Suslin tree S such that the forcing axiom holds for every proper forcing which preserves S to be Suslin.

Question (Todorčević). Under PFA(S), does S force \mathcal{K}_2 ?

Question (Todorčević). Under PFA(S), does S force no S-spaces?

Question. What statements can be forced by S under PFA(S)?

PFA(S) was introduced to combines many of the consequences of the two contradictory set theoretic axioms, the weak diamond principle, and PFA.

Theorem (Consequences from the weak \diamondsuit). A Suslin tree forces the following. (Farah) $\mathfrak{t} = \aleph_1$.

(Farah) It doesn't hold that all \aleph_1 -dense subsets of the reals are isomorphic.

(Larson–Todorčević) Every ladder system has an ununiformized coloring.

(Larson–Todorčević) There are no Q-sets.

(Moore–Hrušák–Džamonja) $\Diamond(\mathbb{R},\mathbb{R},\neq)$ holds.

Theorem (Consequences from PFA). Under PFA(S), S forces the following.

(Todorčević) $2^{\aleph_0} = \aleph_2 = \mathfrak{h} = \operatorname{add}(\mathcal{N}).$

(Farah) The open graph dichotomy.

(Todorčević) The *P*-ideal dichotomy.

(Todorčević) There are no compact S-spaces.

Today, we see the following.

Theorem. Under PFA(S), S forces the following.

§1. Every forcing with rectangle refining property has precaliber \aleph_1 .

§2. There are no ω_2 -Aronszajn trees.

§3. All Aronszajn trees are club-isomorphic.

§4. The weak club guessing and \mho fail.

§1. Every forcing with rec. ref. has precaliber \aleph_1 in the ext. with S under PFA(S).

Definition. FSCO₀ is the collection of forcing notions \mathbb{P} such that

- conditions of \mathbb{P} are finite sets of countable ordinals,
- $\bullet \ \mathbb{P}$ is uncountable, and
- $\leq_{\mathbb{P}}$ is equal to the superset relation \supseteq , that is, for any σ and τ in \mathbb{P} , $\sigma \leq_{\mathbb{P}} \tau$ iff $\sigma \supseteq \tau$.

E.g., a specialization of an Aronszajn tree, freezing an (ω_1, ω_1) -gap, adding an uncountable homogeneous set of a partition.

Definition (Y.). A forcing notion \mathbb{P} in FSCO₀ has the rectangle refining property (REC) if \mathbb{P} is uncountable and

for any I and $J \in [\mathbb{P}]^{\aleph_1}$, if $I \cup J$ forms a Δ -system, then there are $I' \in [I]^{\aleph_1}$ and $J' \in [J]^{\aleph_1}$ s.t. for every $p \in I'$ and $q \in J'$, $p \not\perp_{\mathbb{P}} q$.

Note that REC implies CCC.

 $FSCO_2 \subseteq FSCO_0$ is defined (omitted here).

Lemma. For any ladder system and its colorig, there is a forcing with REC in $FSCO_2$ which adds a function uniformizing the coloring.

Theorem (Larson–Todorčević). *In the extension with a coherent Suslin tree, every ladder system has a coloring which cannot be uniformized.*

So, S forces that $MA_{\aleph_1}(REC \text{ in } FSCO_2)$ fails.

Lemma. Under $MA_{\aleph_1}(S)$, S forces that every forcing with REC in FSCO₂ has precaliber \aleph_1 .

Therefore,

Theorem. Under $MA_{\aleph_1}(S)$, *S* forces that every forcing with REC in FSCO₂ has precaliber \aleph_1 and $MA_{\aleph_1}(REC \text{ in FSCO}_2)$ fails.

Compare with the following.

Theorem (Todorčević–Veličković). Every ccc forcing has precaliber \aleph_1 iff MA_{\aleph_1} holds.

§2. There are no ω_2 -Aronszajn trees in the extension with S under PFA(S). This proof is quite standard.

Claim. For a σ -closed forcing \mathbb{P} and an *S*-name \dot{T} for an ω_2 -tree, \mathbb{P} adds no new *S*-names for cofinal chains through \dot{T} whenever $\mathfrak{c} > \aleph_1$ holds.

Claim. For an *S*-name \dot{T} for a tree of size \aleph_1 and of height ω_1 which doesn't have uncountable (i.e. cofinal) chains through \dot{T} , there exists a ccc forcing notion which preserves *S* to be Suslin and forces \dot{T} to be special (i.e. to be a union of countably many antichains through \dot{T}).

The following is the motivation of this work.

Theorem (Todorčvić). PFA implies the failure of \Box_{κ,ω_1} for any unctbl κ . **Theorem** (Magidor). It is consistent that PFA and \Box_{κ,ω_2} hold for any unctbl κ . **Theorem** (Magidor). It is consistent that PDFA and \Box_{κ,ω_1} hold for any unctbl κ . **Theorem** (Raghavan). PID implies the failure of \Box_{κ,ω_1} for any unctbl κ , and PID + $\mathfrak{b} > \aleph_1$ implies the failure of \Box_{κ,ω_1} for any κ with cf(κ) > ω_1 . **Question**. Does PID + $\mathfrak{p} > \aleph_1$ imply the failure of \Box_{ω_1,ω_1} ?

We note that \Box_{ω_1,ω_1} holds iff there exists a special ω_2 -Aronszajn tree.

Claim. For an *S*-name \dot{T} for a tree of size \aleph_1 and of height ω_1 which doesn't have uncountable (i.e. cofinal) chains through \dot{T} , there exists a ccc forcing notion which preserves *S* to be Suslin and forces \dot{T} to be special (i.e. to be a union of countably many antichains through \dot{T}).

Sketch. Assume that $\dot{<}_T$ is an *S*-name such that \Vdash_S " $\dot{T} = \langle \omega_1, \dot{<}_T \rangle$ " and for any $s \in S$ and α , β in ω_1 , if $s \Vdash_S$ " $\alpha \not\perp_{\dot{T}} \beta$ " and $\alpha < \beta$, then $s \Vdash_S$ " $\alpha \dot{<}_{\dot{T}} \beta$ ". Take a club *C* on ω_1 s.t. for every $\delta \in C$, every node of S_{δ} decides $\dot{<}_T \cap (\delta \times \delta)$.

 \mathbb{P} consists of finite partial functions $p: S \to \bigcup_{\sigma \in [\omega]^{<\aleph_0}} ([\omega_1]^{<\aleph_0})^{\sigma}$ such that

• for every $s \in \text{dom}(p)$ and $n \in \text{dom}(p(s))$, $p(s)(n) \subseteq \sup(C \cap \mathsf{lv}(s))$ and

 $s \Vdash_S$ " p(s)(n) is an antichain in \dot{T} ",

• for every s and t in dom(p), if $s <_S t$, then for every $n \in \text{dom}(p(s)) \cap \text{dom}(p(t))$,

 $t \Vdash_S " p(s)(n) \cup p(t)(n)$ is an antichain in \dot{T} ",

 $p \leq_{\mathbb{P}} q : \iff p \supseteq q.$

Note that \mathbb{P} adds an *S*-name which witnesses that \dot{T} to be special in the extension with *S*.

It is proved that if $\mathbb{P} \times S$ has an uncountable antichain, then some node of S forces that \dot{T} has an uncountable chain.

§3. All Aronszajn trees are club-isomorphic in the extension with S under PFA(S).

Let \dot{T} and \dot{U} *S*-names for Aronszajn trees s.t. \Vdash_S " $\dot{T}, \dot{U} \subseteq \omega^{<\omega_1} \& <_{\dot{T}} = <_{\dot{U}} = \subseteq$ ".

 $\ensuremath{\mathbb{P}}$ consists of the functions p such that

- dom(p) is a finite \in -chain of countable elementary submodels of $H(\aleph_2)$ with S, \dot{T} and \dot{U} ,
- for each $M \in \text{dom}(p)$, $p(M) = \langle t_M^p, f_M^p \rangle$, where $t_M \in S$ and $f_M^p : \omega^{\alpha_M^p} \to \omega^{\alpha_M^p}$; non-empty finite partial injection for some $\alpha_M^p < \text{ht}(t_M^p)$,
- for each $M, M' \in \operatorname{dom}(p)$ with $M' \in M$,

$$t^p_M \not\in M, \ t^p_{M'} \in M, \ \alpha^p_M \not\in M \text{ and } \alpha^p_{M'} \in M,$$

• for each $M \in \operatorname{dom}(p)$,

-
$$t^p_M$$
 decides the S -names $\dot{T} \cap \omega^{\leq \alpha^p_M}$ and $\dot{U} \cap \omega^{\leq \alpha^p_M}$,

$$-t^p_M \Vdash_S$$
 "dom $(f^p_M) \subseteq \dot{T}$ & ran $(f^p_M) \subseteq \dot{U}$ ", and

$$\begin{split} &-t^p_M\Vdash_S `` \bigcup_{\substack{M'\in \operatorname{dom}(p)\cap M\\ \text{with }t^p_{M'}<_S t^p_M}} f^p_M \cup f^p_M \text{ is an order-preserving map whose domain is}\\ &a \text{ subtree of }\dot{T} \text{ in which every maximal chain is of height}\\ & \left|\left\{M'\in \operatorname{dom}(p)\cap M;t^p_{M'}<_S t^p_M\right\}\right|+1", \end{split}$$

and for each
$$p = \left\langle \left\langle t_M^p, f_M^p \right\rangle; M \in \operatorname{dom}(p) \right\rangle$$
 and $q = \left\langle \left\langle t_M^q, f_M^q \right\rangle; M \in \operatorname{dom}(q) \right\rangle$ in \mathbb{P} ,
 $p \leq_{\mathbb{P}} q : \iff \operatorname{dom}(p) \supseteq \operatorname{dom}(q) \And \forall M \in \operatorname{dom}(q) \left(t_M^p = t_M^q \And f_M^p \supseteq f_M^q \right).$

For a \mathbb{P} -generic $G_{\mathbb{P}}$, define S-names $\dot{I}_{G_{\mathbb{P}}}$ and $\dot{f}_{G_{\mathbb{P}}}$ such that, letting \dot{G}_S be a canonical S-generic name over the extension by $G_{\mathbb{P}}$,

$$\Vdash_S " \dot{I}_{G_{\mathbb{P}}} := \left\{ \alpha_M^p; p \in G_{\mathbb{P}} \& M \in \mathsf{dom}(p) \& t_M^p \in \dot{G}_S \right\} "$$

and

$$\Vdash_S `` \dot{f}_{G_{\mathbb{P}}} := \bigcup_{\substack{p \in G_{\mathbb{P}} \\ M \in \operatorname{dom}(p) \\ \text{with } t^p_M \in \dot{G}_S}} f^p_M ".$$

Note that $\dot{I}_{G_{\mathbb{P}}}$ is an *S*-name for an uncountable subset of ω_1 and $\dot{f}_{G_{\mathbb{P}}}$ is an \dot{S} -name for an isomorphism $\left\{x \in \dot{T}; \operatorname{ht}(x) \in \dot{I}_{G_{\mathbb{P}}}\right\} \rightarrow \left\{y \in \dot{U}; \operatorname{ht}(y) \in \dot{I}_{G_{\mathbb{P}}}\right\}.$

It is proved that \mathbb{P} is proper and preserves S to be Suslin.

§4. The weak club guessing and \Im fail in the extension with S under PFA(S).

Definition (Shelah). A ladder system $\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle$ is called weak club guessing if for every club $D \subseteq \omega_1$, there exists $\alpha \in \omega_1 \cap \text{Lim}$ such that $C_{\alpha} \cap D$ is unbounded in α .

Theorem (Shelah ?). PFA *implies no weak club guessing ladder systems.*

Proof. Let $\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle$ be a ladder system.

 $\mathbb{P}_{\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle}$ consists of pairs $p = \langle p_0, p_1 \rangle$ such that

- $p_0: \omega_1 \rightarrow \omega_1$; finite partial, strict increasing,
- $p_1: \omega_1 \cap \operatorname{Lim} \to \omega_1$; finite partial, regressive, and
- for each $\xi \in \text{dom}(p_1)$, $ran(p_0) \cap C_{\xi} \subseteq p_1(\xi)$,

$$p \leq_{\mathbb{P}_{\langle C_{\alpha}; \alpha \in \omega_1 \cap \operatorname{Lim} \rangle}} p' : \iff p_0 \supseteq p'_0 \text{ and } p_1 \supseteq p'_1.$$

It suffices to show that $\mathbb{P}_{\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle}$ is proper.

 $p \in \mathbb{P}_{\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle}$ iff • $p_0 : \omega_1 \to \omega_1$; finite partial, strict increasing,

 $=\mathbb{P}$

- $p_1:\omega_1\cap\operatorname{Lim}\to\omega_1$; finite partial, regressive, and
- for each $\xi \in \text{dom}(p_1)$, $ran(p_0) \cap C_{\xi} \subseteq p_1(\xi)$,

$$p \leq_{\mathbb{P}_{\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle}} p' : \iff p_0 \supseteq p'_0 \text{ and } p_1 \supseteq p'_1.$$

Let $\lambda \ll \theta$ be large enough regular, $N \prec \langle H(\theta), \in$, a Skolem function of $H(\lambda) \rangle$ countable with $\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle$, and $p = \langle p_0, p_1 \rangle \in \mathbb{P} \cap N$. Show that $p^+ = \langle p_0 \cup \{ \langle \omega_1 \cap N, \omega_1 \cap N \rangle \}, p_1 \rangle$ is (N, \mathbb{P}) -generic.

Let $\mathcal{D} \in N$ be dense $\subseteq \mathbb{P}$, and $q \leq_{\mathbb{P}} p^+$ with $q \in \mathcal{D}$. Note that $q_0 \upharpoonright N = q_0 \cap N$. Take a countable $M \prec H(\lambda)$ in N with $\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle$, \mathcal{D} and $q \cap N$. Then

$$\left\{ r \in \mathcal{D}; r \leq_{\mathbb{P}} q \cap N \text{ and } \left\{ \left\langle C_{\xi} \cap M, r_{1}(\xi) \right\rangle; \xi \in \mathsf{dom}(r_{1}) \setminus \mathsf{dom}(q_{1} \cap N) \right\} \\ \supseteq \left\{ \left\langle C_{\xi} \cap M, q_{1}(\xi) \right\rangle; \xi \in \mathsf{dom}(q_{1}) \setminus N \text{ with } q_{1}(\xi) \in N \right\} \right\}$$

is in M and not empty. Any member r of this set in N is compatible with q. In fact, for any $r' \leq_{\mathbb{P}_{\langle C_{\alpha}; \alpha \in \omega_1 \cap \text{Lim} \rangle}} r$ in N, r' and $\langle r_0 \cup q_0, r_1 \cup q_1 \rangle$ are compatible. \Box **Theorem.** Under PFA(S), S forces no weak club guessing ladder systems.

Proof. Let $\langle \dot{C}_{\alpha} : \alpha \in \omega_1 \rangle$ be an *S*-name for a ladder system. Take a club $E \subseteq \omega_1$ s.t. $\forall \delta \in E$, any nodes of S_{δ} decides the value of \dot{C}_{γ} , $\forall \gamma < \delta$.

 $\mathbb{P}_{\langle \dot{C}_{\alpha}: \alpha \in \omega_1 \rangle, E}$ consists of finite partial functions p with dom $(p) \subseteq S$ such that for any $s \in \text{dom}(p)$, $p(s) = \langle p_0^s, p_1^s \rangle$ such that

- $p_0^s : \sup(E \cap \mathsf{lv}(s)) \to \sup(E \cap \mathsf{lv}(s))$; finite partial, strictly increasing,
- $p_1^s:\omega_1
 ightarrow \omega_1$; finite partial, regressive,

•
$$s \Vdash_S$$
 " $\left\langle \bigcup_{\substack{t \in \operatorname{dom}(p) \\ \text{with } t \leq S^s}} \operatorname{dom}(p_0^t), \bigcup_{\substack{t \in \operatorname{dom}(p) \\ \text{with } t \leq S^s}} \operatorname{dom}(p_1^t) \right\rangle \in \mathbb{P}_{\left\langle \dot{C}_{\alpha}; \alpha \in \omega_1 \cap \operatorname{Lim} \right\rangle}$ ",
 $p \leq_{\mathbb{P}_{\left\langle \dot{C}_{\alpha}: \alpha \in \omega_1 \right\rangle, E}} p' : \iff p \supseteq p'.$

 $\mathbb{P}_{\langle \dot{C}_{\alpha}: \alpha \in \omega_1 \rangle, E}$ is proper and preserves S.

In fact,

for any $N \prec \left\langle H(\theta), \in, \text{ a Skolem function of } H(\lambda) \right\rangle$ with $S, \left\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \right\rangle$ and $E, p \in \mathbb{P}_{\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \rangle, E} \cap N$, and $q \in \mathbb{P}_{\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \rangle, E}$ with $q \leq_{\mathbb{P}_{\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \rangle, E}} p$, there exists $q' \leq_{\mathbb{P}_{\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \rangle, E}} q$ such that for any $r \in \mathbb{P}_{\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \rangle, E} \cap N$ with $r \leq_{\mathbb{P}_{\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \rangle, E}} q' \cap N$, q' and r are compatible with $\mathbb{P}_{\langle \dot{C}_{\alpha} : \alpha \in \omega_{1} \rangle, E}$.

Therefore every condition of $\mathbb{P}_{\langle \dot{C}_{\alpha}: \alpha \in \omega_1 \rangle, E} \cap N$ is $(N, \mathbb{P}_{\langle \dot{C}_{\alpha}: \alpha \in \omega_1 \rangle, E})$ -generic.

Compare with the following.

Theorem (Shelah, Moore). An ω -proper forcing preserves weak club guessing sequences on ω_1 .

 $\boldsymbol{\mho}$ case is similar to this.

Recall. A coherent Suslin tree S consists of functions in $\omega^{<\omega_1}$ and closed under finite modifications. That is,

- for any s and t in S, $s \leq_S t$ iff $s \subseteq t$,
- S is closed under taking initial segments,
- for any s and t in S, $\{\alpha \in \min\{lv(s), lv(t)\}; s(\alpha) \neq t(\alpha)\}\$ is finite, and
- for any $s \in S$ and $t \in \omega^{|v(s)|}$, if $\{\alpha \in |v(s); s(\alpha) \neq t(\alpha)\}$ is finite, then $t \in S$.

For s and $t \in S$ with the same level, define

$$\begin{array}{cccc} \psi_{s,t} & \{u \in S; s \leq_S u\} & \to & \{u \in S; t \leq_S u\} \\ & & & & \\ & & & \\ u & & \mapsto & t \cup (u \upharpoonright [\mathsf{lv}(s), \mathsf{lv}(u))) \end{array}$$

Note that $\psi_{s,t}$ is an isomorphism, and if s, t, u are nodes in S with the same level, then $\psi_{s,t}$, $\psi_{t,u}$ and $\psi_{s,u}$ commute.